q-polymatroids and their relation to rank-metric codes
نویسندگان
چکیده
It is well known that linear rank-metric codes give rise to q-polymatroids. Analogously matroid theory, one may ask whether a given q-polymatroid representable by code. We provide an answer presenting example of q-matroid not any code and, via relation paving matroids, examples various q-matroids are $${{\mathbb {F}}}_{q^m}$$ -linear codes. then go on and introduce deletion contraction for q-polymatroids show they mutually dual correspond puncturing shortening Finally, we closure operator along with the notion flats generalized rank weights fully determined associated q-polymatroid.
منابع مشابه
Rank-Metric Codes and $q$-Polymatroids
We study some algebraic and combinatorial invariants of rank-metric codes, specifically generalized weights. We introduce q-polymatroids, the q-analogue of polymatroids, and develop their basic properties. We show that rank-metric codes give rise to q-polymatroids, and that several of their structural properties are captured by the associated combinatorial object. Introduction and Motivation Du...
متن کاملRank-metric codes and their duality theory
We compare the two duality theories of rank-metric codes proposed by Delsarte and Gabidulin, proving that the former generalizes the latter. We also give an elementary proof of MacWilliams identities for the general case of Delsarte rank-metric codes, in a form that never appeared in the literature. The identities which we derive are very easy to handle, and allow us to re-establish in a very c...
متن کاملRank-metric LCD codes
In this paper, we investigate the rank-metric codes which are proposed by Delsarte and Gabidulin to be complementary dual codes. We point out the relationship between Delsarte complementary dual codes and Gabidulin complementary dual codes. In finite field Fmq , we construct two classes of Gabidulin LCD MRD codes by self-dual basis (or almost self-dual basis) of Fmq over Fq. Under a suitable co...
متن کاملRank-metric codes and applications
The State of Art for rank codes is represented. The theory and applications are considered.
متن کاملProperties of Rank Metric Codes
This paper investigates general properties of codes with the rank metric. First, we investigate asymptotic packing properties of rank metric codes. Then, we study sphere covering properties of rank metric codes, derive bounds on their parameters, and investigate their asymptotic covering properties. Finally, we establish several identities that relate the rank weight distribution of a linear co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebraic Combinatorics
سال: 2022
ISSN: ['0925-9899', '1572-9192']
DOI: https://doi.org/10.1007/s10801-022-01129-y